UNIVALENT HARMONIC MAPPINGS OF ANNULI AND A CONJECTURE OF J. C. C. NITSCHE

BY

ALLEN WEITSMAN

Department of Mathematics, Purdue University
West Lafayette, IN 47907, USA
e-mail: weitsman@purdue.edu

ABSTRACT

Let w = f(z) be a univalent harmonic mapping of the annulus $\{\rho \leq |z| \leq 1\}$ onto the annulus $\{\sigma \leq |w| \leq 1\}$. It is shown that $\sigma < 1/(1 + (\rho^2/2)(\log \rho)^2)$.

1. Introduction

Let D be a domain in the complex plane \mathbb{C} . By a univalent harmonic mapping f of D we shall mean that f(z) = u(z) + iv(z) where u and v are real harmonic in D, and f is injective and sense preserving.

We shall consider the case where D is the annulus $\mathcal{A}_{\rho} = \{z: \rho < |z| < 1\}$ and the univalent harmonic mapping w = f(z) maps \mathcal{A}_{ρ} onto $\mathcal{A}_{\sigma} = \{w: \sigma < |w| < 1\}$.

In [N], Nitsche considered possible values for $\sigma = \sigma(\rho)$ for a fixed ρ . He showed by means of examples that the values $[0, 2\rho/(1+\rho^2)]$ were all attainable for σ . He also showed that there exists $\sigma_0 = \sigma_0(\rho)$ such that for any such univalent f mapping \mathcal{A}_{ρ} onto \mathcal{A}_{σ} , then

$$(1.1) \sigma \leq \sigma_0(\rho),$$

and he raised the question as to whether or not $\sigma_0(\rho) = 2\rho/(1+\rho^2)$ was the sharp bound for (1.1).

Though Nitsche's problem has been mentioned in surveys [BH], [D], [S], it is only recently [L] that a quantitative bound has been given.

Received May 29, 2000

In [L] Lyzzaik proved that if B(s) is the Grötzsch domain conformally equivalent to \mathcal{A}_{ρ} , then

$$(1.2) \sigma \le s.$$

This will be discussed further in §3. In [L], it is conjectured that (1.2) is sharp. In this paper we shall prove an estimate which shows that (1.2) is not sharp.

THEOREM 1.1: Let f be a univalent harmonic mapping of A_{ρ} onto A_{σ} . Then

$$\sigma = \sigma(\rho) \le \frac{1}{1 + (\rho^2/2)(\log \rho)^2}.$$

We may assume throughout that $f \in \mathcal{C}^1(\overline{\mathcal{A}_{\rho}})$. In fact we may take a proper subannulus \mathcal{A} of \mathcal{A}_{σ} close to \mathcal{A}_{σ} itself, and φ a conformal mapping of $f^{-1}(\mathcal{A})$ onto an annulus $\mathcal{A}_{\rho'} = \{z : \rho' < |z| < 1\}$ with $\rho' > \rho$ arbitrarily close to ρ . Further, $f(\varphi^{-1}(z)) \in \mathcal{C}^1(\overline{\mathcal{A}_{\rho'}})$ since $\partial f^{-1}(\mathcal{A})$ consists of \mathcal{C}^{∞} curves. Then $cf(\varphi^{-1}(z))$ for a constant c maps onto $\mathcal{A}_{\sigma'} = \{w : \sigma' < |w| < 1\}$ with $\sigma' > \sigma$ arbitrarily close to σ .

2. Proof of Theorem 1

Let w = f(z) be a univalent harmonic mapping of the annulus \mathcal{A}_{ρ} onto \mathcal{A}_{σ} . We may assume that |z| = 1 and |w| = 1 correspond under f.

We shall write $f(z) = R(z)e^{i\psi(z)}$. Then, a straightforward computation shows that

$$(2.1) \Delta R = R|\nabla \psi|^2.$$

Let $\mathcal{G}(z,\zeta)$ be the Green's function for \mathcal{A}_{ρ} with pole at ζ , and using (2.1) we write the subharmonic function R(z) as

(2.2)
$$R(z) = -\frac{1}{2\pi} \int_{\mathcal{A}_2} \mathcal{G}(z,\zeta) R(\zeta) |\nabla \psi(\zeta)|^2 dA(\zeta) + H(z),$$

where H is the harmonic function having boundary values R(z) on each boundary component. Specifically,

(2.3)
$$H(z) = \sigma + \frac{1 - \sigma}{\log(1/\rho)} \log \frac{|z|}{\rho}.$$

Let $m(r) = \int_0^{2\pi} R(re^{i\theta})d\theta$. Then, with the assumption that the inner boundaries correspond, the univalence of f requires that

$$(2.4) m'(\rho) \ge 0.$$

Computing $m'(\rho)$ by (2.2) and (2.3) we have

$$(2.5) m'(\rho) = -\frac{d}{dr} \frac{1}{2\pi} \int_0^{2\pi} \int_{\mathcal{A}_{\rho}} \mathcal{G}(re^{i\theta}, \zeta) R(\zeta) |\nabla \psi(\zeta)|^2 dA(\zeta) d\theta|_{r=\rho} + \frac{2\pi (1-\sigma)}{\rho \log 1/\rho}.$$

The term involving $\mathcal{G}(re^{i\theta},\zeta)$ in (2.5) can be evaluated in a standard way. Briefly, if F is continuous on $\overline{\mathcal{A}_{\rho}}$ and u(z) is defined by

$$u(z) = rac{1}{2\pi} \int_{A} \int \mathcal{G}(z,\zeta) F(\zeta) dA(\zeta), \quad z \in \mathcal{A}_{
ho},$$

let

(2.6)
$$v(z) = \frac{1}{2\pi} \int \int \nabla_z \mathcal{G}(z,\zeta) F(\zeta) dA(\zeta), \quad z \in \mathcal{A}(\rho)$$

where ∇_z is the gradient in the z variable. Since

$$G(z,\zeta) = \log \frac{1}{|z-\zeta|} + h(z,\zeta)$$

with $h(z,\zeta)$ harmonic in each variable separately, we see that the integral in (2.6) exists. Let $\eta(r)$ be a differentiable function of r for $0 \le r < \infty$ such that $\eta(r) = 0$ for $0 \le r \le 1$, $\eta(r) = 1$ for $r \ge 2$, and $\eta'(r) \le 2$. If for small $\varepsilon > 0$ and fixed $z \in \mathcal{A}_{\varrho}$

$$u_{arepsilon}(z) = rac{1}{2\pi} \int_A \int \mathcal{G}(z,\zeta) F(\zeta) \eta\Big(rac{|z-\zeta|}{arepsilon}\Big) dA(\zeta),$$

then

$$|v(z) - \nabla u_{\varepsilon}| \leq \frac{1}{\pi} \int_{|z-\zeta| \leq 2\varepsilon} \left(\frac{1}{|z-\zeta|} + M_1 + \frac{2}{\varepsilon} \left(\log \frac{1}{|z-\zeta|} + M_2 \right) \right) M_3 dA(\zeta),$$

where $M_1 = \max_{|z-\zeta| \le 2\varepsilon} |\nabla_z h|$, $M_2 = \max_{|z-\zeta| \le 2\varepsilon} |h(z,\zeta)|$, and $M_3 = \max_{|z-\zeta| \le 2\varepsilon} F(\zeta)$. Letting $\varepsilon \to 0$ we then have

$$\nabla u(z) = v(z).$$

We shall apply this with $F(\zeta) = R(\zeta)|\nabla \psi|^2$, and with our assumption that $f \in C^1(\overline{\mathcal{A}_\rho})$ we may apply it up to and including the boundary. Thus, the d/dr in (2.5) can be moved under the integral signs.

Now, for each $\zeta \in \mathcal{A}_{\rho}$, if we set

(2.7)
$$U(\zeta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial \mathcal{G}}{\partial r} (\rho e^{i\theta}, \zeta) d\theta,$$

then $U(\zeta)$ is the harmonic function in \mathcal{A}_{ρ} with boundary values $1/\rho$ on $|\zeta| = \rho$ and 0 on $|\zeta| = 1$. This is simply

(2.8)
$$U(\zeta) = \frac{\log |\zeta|}{\rho \log \rho}.$$

Using (2.7) and (2.8) in (2.5) we obtain

$$m'(\rho) = \int_{A_{-}}^{A_{-}} R(\zeta) |\nabla \psi(\zeta)|^{2} \frac{\log |\zeta|}{\rho \log(1/\rho)} dA(\zeta) + \frac{2\pi(1-\sigma)}{\rho \log 1/\rho},$$

which with (2.4) gives

$$\int\int\limits_{\mathcal{A}_{-}} R(\zeta) |\nabla \psi(\zeta)|^2 \log \frac{1}{|\zeta|} dA(\zeta) \leq 2\pi (1-\sigma).$$

Integration by parts yields

(2.9)
$$\int_0^{2\pi} \int_0^1 \int_0^r R(te^{i\theta}) |\nabla \psi(te^{i\theta})|^2 t dt \frac{dr}{r} d\theta \le 2\pi (1 - \sigma).$$

Now,

$$\int_{0}^{2\pi} \sqrt{R(te^{i\theta})} |\nabla \psi(te^{i\theta})| td\theta \ge 2\pi \rho \sqrt{\sigma},$$

so by the Cauchy-Schwarz inequality,

$$\int_{0}^{2\pi} \int_{\rho}^{r} R(te^{i\theta}) |\nabla \psi(te^{i\theta})|^{2} t dt d\theta \ge \frac{(2\pi\rho\sqrt{\sigma})^{2}}{2\pi} \log \frac{r}{\rho}$$
$$= 2\pi\rho^{2}\sigma \log \frac{r}{\rho}.$$

Using this in (2.9) we have

$$\rho^2 \sigma \int_{\rho}^{1} \log(r/\rho) \frac{dr}{r} \le 1 - \sigma.$$

Thus,

$$\frac{\rho^2 \sigma}{2} (\log \rho)^2 \le 1 - \sigma$$

or

$$\sigma \leq \frac{1}{(\rho^2/2)(\log \rho)^2 + 1}.$$

3. Comparisons of estimates

Let $\mu(s)$ denote the module of the Grötzsch domain B(s) which is the unit disk with the segment $0 \le x \le s$ of the real axis removed. If s is chosen so that B(s) is conformally equivalent to \mathcal{A}_{ρ} , then Lyzzaik [L] proved that $\sigma \le s$. Expanding $\mu(s)$ [LV, pp. 60, 61] near 1 we have

$$\mu(s) = \frac{\pi^2}{4\log(4/\sqrt{1-s^2} - \delta(s))}$$

where $\delta(s) \sim \sqrt{1-s^2}$ as $s \to 1^-$.

Using the definition of B(s) we then have

$$\log rac{1}{
ho} \sim rac{\pi^2}{2\log(16/(1-s^2))}$$

or

(3.1)
$$s \sim \sqrt{1 - 16 \exp\left(\frac{-\pi^2}{2 \log 1/\rho}\right)}$$
 as $\rho \to 1^-$.

Thus, for ρ near 1, Lyzzaik's estimate is $\sigma \leq s$ where s satisfies (3.1).

The estimate in Theorem 1.1 is of no value when ρ is small. However, for ρ close to 1 it is easy to see that it is substantially smaller than that given by (3.1). On the other hand, if we let $\tau(\rho) = 2\rho/(1+\rho^2)$, which is the inner radius for the examples of Nitsche, and $\sigma(\rho)$ as in Theorem 1, then $(1-\tau(\rho))/(1-\sigma(\rho)) \to 1$ as $\rho \to 1^-$.

References

- [BH] D. Bshouty and W. Hengartner, Univalent harmonic mappings in the plane, Annales Universitatis Mariae Curie-Skłodowska, Sectio A XLVIII 3 (1994), 12–42.
- [D] P. Duren, A survey of harmonic mappings in the plane, Texas Tech University Mathematics Series 18 (1992), 411–415.
- [L] A. Lyzzaik, The module of the image annuli under univalent harmonic mappings and a conjecture of J. C. C. Nitsche, preprint.
- [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Springer-Verlag, Berlin, 1973.
- J.C.C. Nitsche, On the modulus of doubly-connected regions under harmonic mappings, The American Mathematical Monthly 69 (1962), 781-782.
- [S] G. Schober, Planar harmonic mappings, in Computational Methods and Function Theory Proceedings, Valparaiso 1989, Lectures Notes in Mathematics 1435,
 Springer-Verlag, Berlin, 1990, pp. 171-176.